您现在的位置:学习街 > 高考备考 > 复习方法 > 高考数学复习方法 > 正文
高考数学复习方法 高考语文复习方法 高考英语复习方法 高考物理复习方法 高考化学复习方法 高考政治复习方法 高考历史复习方法 高考地理复习方法 高考生物复习方法 高考文综复习方法 高考理综复习方法

高三数学复习资料:三角函数公式

时间:2020-09-13 06:52:02

为大家整理的高三数学复习资料:三角函数公式文章,供大家学习参考!


考纲要求


  1.会用向量的数量积推导出两角差的余弦公式.


  2.能利用两角差的余弦公式导出两角差的正弦、正切公式.


  3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.


  考纲研读


  向量是沟通代数、几何与三角函数的一种工具,利用向量推导公式时,要结合图形,将所求的角用已知角表示出来,并借助诱导公式求解.研究不同三角函数值之间的关系时,常以角为切入点,并以此为依据进行公式的选择,同时还要关注式子的结构特征,通过对式子进行恒等变形,将问题得到简化.


点击免费下载资料>>第六章 第5讲 两角和与差及二倍角的三角函数公式

第1讲 集 合
一.【课标要求】
1.集合的含义与表示
(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
2.集合间的基本关系
(1)理解集合之间包含与相等的含义,能识别给定集合的子集;
(2)在具体情境中,了解全集与空集的含义;
3.集合的基本运算
(1(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
(3)能使用Venn二.【命题走向】
的直观性,注意运用Venn预测2010题的表达之中,相对独立。具体题型估计为:
(1)题型是1个选择题或1(2
三.【要点精讲】
1
(1a的元素,记作aA;若b不是集合A的元素,记作bA;
(2
确定性:设x是某一个具体对象,则或者是A的元素,或者不是A
指属于这个集合的互不相同的个体(对象),因此,
无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;
(3)表示一个集合可用列举法、描述法或图示法;
列举法:把集合中的元素一一列举出来,写在大括号内;
描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法:
非负整数集(或自然数集),记作N;
正整数集,记作N*或N+;整数集,记作Z;
有理数集,记作Q;
实数集,记作R。
2.集合的包含关系:
(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或AB);
集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且A≠B,则称A是B的真子集,记作A B; (2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集);
3.全集与补集:
(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;
(2)若S是一个集合,AS,则,CS={x|xS且xA}称SA的补集;
(3)简单性质:1)CS(CS)=A;2)CSS=,CS=S
4.交集与并集:
(1)一般地,由属于集合A且属于集合BA与B的交集。交集AB{x|xA且xB}。
(2)一般地,由所有属于集合AA与B的并集。并集AB{x|xA或xB}
的关键是“且”与“或”挖掘题设条件,结合Venn
5.集合的简单性质:
(1)AAA,BBA;
(2)ABBA;
(3)(AAB);
(4)ABABA;ABABB;
(5)CS(A∩B)=(CSA)∪(CSB),CS(A∪B)=(CSA)∩(CSB)。
四.【典例解析】
题型1:集合的概念
(2009湖南卷理)某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__
答案 :12解析 设两者都喜欢的人数为x人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有
由此可得(15x)(10x)x830,解得x3,所以15x12,即 所(10x)人,
求人数为12人。 例1.(2009广东卷理)已知全集UR,集合M{x2x12}和
N{xx2k1,k1,2,}的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有

( )

A. 3个C. 1个答案解析 由
例2.的值 为 答案 D
解析 ∵D.
,
题型2:集合的性质
2例3.(2009山东卷理)集合A0,2,a,B1,a,若AB0,1,2,4,16,则a的值为 
A.0 B.1 C.2 D.4
答案 D
2 ( ) a216解析 ∵A0,2,a,B1,a,AB0,1,2,4,16∴∴a4,故选D.
a4
【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,解析 设两者都喜欢的人数为x人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有
由此可得(15x)(10x)x830,解得x3,所以15x12,即 所(10x)人,
求人数为12人。 例1.(2009广东卷理)已知全集UR,集合M{x2x12}和
N{xx2k1,k1,2,}的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有

( )

A. 3个C. 1个答案解析 由
例2.的值 为 答案 D
解析 ∵D.
,
题型2:集合的性质
2例3.(2009山东卷理)集合A0,2,a,B1,a,若AB0,1,2,4,16,则a的值为 
A.0 B.1 C.2 D.4
答案 D
2 ( ) a216解析 ∵A0,2,a,B1,a,AB0,1,2,4,16∴∴a4,故选D.
a4
【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.
随堂练习
1.( 广东地区2008年01月份期末试题汇编)设全集U=R,A={x∈N︱1≤x≤10},B={ x∈R︱x
2+ x-6=0},则下图中阴影表示的集合为 ( )
A.{2} B.{3}
C.{-3,2} D.{-2,3}
2. 已知集合A={y|y-(a+a+1)y+a(a+1)>0},B={y|y-6y+8≤0},若2222 A∩B≠φ,则实数a的取值范围为( ).

A∩B=φa由a∴a即A∩B其补集,评注
例4.已知全集S{1,3,x3x22x},A={1,2x}如果CSA{0},则这样的实数x是否存在?若存在,求出x,若不存在,说明理由
解:∵CSA{0};
∴0S且0A,即xx2x=0,解得x10,x21,x32
当x0时,2x1,为A中元素;
当x1时,2x3S当x2时,2x3S
∴这样的实数x存在,是x1或x2。
另法:∵CSA{0}
∴0S且0A,3A
∴xx2x=0且2x3
∴x1或x2。
点评:该题考察了集合间的关系以及集合的性质。分类讨论的过程中“当x0时,322x1”不能满足集合中元素的互异性。此题的关键是理解符号CSA{0}是两层含义:

0S且0AB,求q的值。解:由m(1)m解(1)得解(2)得又因为当q所以,q题型3例5.A,函数g(x)(1)求集合A、B
(2)若AB=B,求实数a的取值范围.
解 (1)A=x|x1或x2
B=x|xa或xa1 
(2)由AB=B得Aa1B,因此a12所以1a1,所以实数a的取值范围是1,1
例6.(2009宁夏海南卷理)已知集合A1,3,5,7,9,B0,3,6,9,12,则AICNB( )
A.1,5,7 B.3,5,7
C.1,3,9 D.1,2,3
答案 A
解析 易有ACNB1,5,7,选A

题型4例7.(1,则
MN)
A.C. 答案
例8设全集合B{x|解:|a1∴Acosx1,x2k,∴x2k(kz)
∴B{x|x2k,kz}
当a1时,CA[a2,a]在此区间上恰有2个偶数。
a12a0 aa2
4a222、Aa1,a2,,2,,k),由A中的元素构成两个相应,ak(k≥2),其中aiZ(i1
的集合:
S(a,b)aA,bA,abA,T(a,b)aA,bA,abA.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的aA,总有aA,则称集合A具有性质P.
(I)对任何具有性质P的集合A,证明:n≤k(k1); 2
(II)判断m和n的大小关系,并证明你的结论.
解:(I

因为0又因时,(aj,即n≤(II(1T. 如果(ab故(a可见,(2)对于(a,b)T,根据定义,aA,bA,且abA,从而(ab,b)S.如果(a,b)与(c,d)是T的不同元素,那么ac与bd中至少有一个不成立,从而abcd与bd中也不至少有一个不成立,
故(ab,b)与(cd,d)也是S的不同元素.
可见,T中元素的个数不多于S中元素的个数,即n≤m,
由(1)(2)可知,mn.
例9.向50名学生调查对A、B两事件的态度,有如下结果 赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人。问对A、B都赞成的学生和都不赞成的学生各有多少人?
解:赞成A的人数为50×3=30,赞成B的人数为530+3=33,如上图,记50名学生组成的集合为U,赞成件A的学生全体为集合A;赞成事件B的学生全体为集B。
设对事件A、B都赞成的学生人数为x,则对A、B
不赞成的学生人数为事合都x+1,赞成A而不赞成B的人数为30-x,赞成B而不赞成A的人数为3
x33-x。依题意(30-x)+(33-x)+x+(


+1)=50,解得x=21。所以对A、B都赞成的同学有21人,例10 -(200+(200题型7例11a解:由由2x1<1,得<0,即-2a22,于是0≤a≤1。
a23因为AB,所以
点评:这是一道研究集合的包含关系与解不等式相结合的综合性题目。主要考查集合的概念及运算,解绝对值不等式、分式不等式和不等式组的基本方法。在解题过程中要注意利用不等式的解集在数轴上的表示方法.体现了数形结合的思想方法。
例12.已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an,Sn1)|n∈N*},B={(x,y)| x2-y2=1,x,y∈R}。 4n试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明: (1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上; (2)A∩B至多有一个元素;
(3)当a1≠0时,一定有A∩B≠。
n(a1an)SS1
,则n(a1+an),这表明点(an,n)的2n2n
S111
坐标适合方程y(x+a1),于是点(an, n)均在直线y=x+a1上。
222n
11yxa122(2)正确;设(x,y)∈A∩B,则(x,y)中的坐标x,y应是方程组的解,由方程组1

x2y21解:(1)正确;在等差数列{an}中,Sn=消去y得:当a1当a1,故

∴A∩(3A据(2)样的(x0,y0)的。
的取值范围.
分析:关键是准确理解AB 的具体意义,首先要从数学意义上解释AB意义,然后才能提出解决问题的具体方法。 解:

命题方程x22x2m40至少有一个负实数根,
设M{m|关于x的方程x22x2m40两根均为非负实数}, 4(2m3)03
则x1x2202m,
2
x1x22m40
第9 / 13页
33
M{m|2m设全集U{m|0}{m|m
22
m的取值范围是
UM={m|m<-2}.
(解法二)命题方程的小根x12m302m312m31m2.
(解法三)设f(x)x22x4,这是开口向上的抛物线,其对称轴x10,则二次函数性质知命题又等价于f(0)0m2,
注意,在解法三中,f(x)的对称轴的位置起了关键作用,否则解答没有这么简单。
(Ⅱ)已知两个正整数集合A={a1,a2,a3,a4},
B{a1,a2,a3,a4},其中a1a2a3a4
若AB{a1,a4},且a1a410,且AB,A、B.
注意“正整数”这个条件的运用,
2222
1a1a2a3a4,a1a2a3a4,AB{a1,a4},只可能有a1a1a12
而a1a410,a49,a4a,
2(1)若a2a4,则a23,AB{a3,},
2
2
222
a3a394124a35;
(2)若a3a4,则a33,a23,与条件矛盾,不合;综上,A{1,3,5,9},B,81(Ⅲ)设集合A1},B{(x,y)|4x2x2y50},
2
2
2
C{(x,y)k,b,使(AB)C分析:正确理解(AB)C
,
,并转化为具体的数学问题.
,必须AC
且BC
,
要使(AB)C(AC)(BC)
y2x1由k2x2(2kb1)xb210, ykxb
当k=0时,方程有解xb1,不合题意;
2
4k21
当k0时由1(2kb1)4k(b1)0得b①
4k
2
2
2
第10 / 13页
4x22x2y50又由4x22(1k)x52b0,
ykxb
20(k1)2
由24(1k)16(52b)0得b②,
8
2
由①、②得bk
1201,而b, 4k8
∵b为自然数,∴b=2,代入①、②得k=1
点评:这是一组关于集合的“交、并”的常规问题,解决这些问题的关键是准确理解问题条件的具体的数学内容,才能由此寻求解决的方法。 题型6

例13B={C={D={则集合A、例14[1,2],都有(2x,都有
|(2x1)(1)设(2)设0000(3)设(x)A,任取xl(1,2),令xn1(2xn),n1,2,,证明:给定正整数k,对任意的正整数p,成立不等式|xkl
解:
对任意x[1,2],(2x)2x,x[1,2],3(2x)5,152,所以
Lk1
xk||x2x1|H。
1L
(2x)(1,2)
第11 / 13页
对任意的x1,x2[1,2],
|(2x1)(2x2)||x1x2|
3
2
12x12
12x11x21x22

12x12
12x11x21x2,
3 所以0<
2
12x12
12x11x21x22

2,

3
0|LK1x2x1。 1L
点评:函数的概念是在集合理论上发展起来的,而此题又将函数的性质融合在集合的关系当中,题目比较新颖
五.【思维总结】
集合知识可以使我们更好地理解数学中广泛使用的集合语言,并用集合语言表达数学问题,运用集合观点去研究和解决数学问题。
1.学习集合的基础能力是准确描述集合中的元素,熟练运用集合的各种符号,如、、
、、=、CSA、∪,∩等等;
第12 / 13页
2.强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用Venn图解题方法的训练,加强两种集合表示方法转换和化简训练;解决集合有关问题的关键是准确理解集合所描述的具体内容(即读懂问题中的集合)以及各个集合之间的关系,常常根据“Venn图”来加深对集合的理解,一个集合能化简(或求解),一般应考虑先化简(或求解);
3.确定集合的“包含关系”与求集合的“交、并、补”是学习集合的中心内容,解决问题时应根据问题所涉及的具体的数学内容来寻求方法。
① 区别∈与、与、a与{a}、φ与{φ}、{(1,2)}与{1,2}; ② AB时,A有两种情况:A=φ与A≠φ
③若集合A中有n(nN)个元素,则集合A的所有不同的子集个数为2,所有真子集

n
A的 ;

为大家整理的高三数学第一轮复习方法指导文章,供大家学习参考!


高三数学复习,面广量大,不少学生感到既畏惧,又无从下手。新课程实施三年来,各年高考试卷难度差异较大,2008年江苏省均分88.01,2009年省均分97.32,2010年省均分为83.12,2011年高考省均分90.21,可见新课改以来,高考数学命题是很稳定,有规律的。那么我们如何提高高三数学复习的针对性和实效性?
一、回归课本,注重基础。
高中数学重要内容主要涉及有代数中有两数:函数及数列,两式:三角式及不等式;几何中有两直线:(1)直线与平面(立几)(2)直线与圆(解几);而高三第一轮复习是重中之重,应回归课本,先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。
二、提高课堂听课效率,勤动手,多动脑。
  高三的课只有两种形式:复习课和评讲课,到高三所有课都进入复习阶段,通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要有自已的思考,听课的目的就明确了。现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。此外还要特别注意老师讲课中的提示。作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。例习题的解答过程留在课后去完成,每记的地方留点空余的地方,以备自已的感悟。
三、以“错”纠错,查漏补缺
  这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。每次订正试卷或作业时,在做错的试题旁边要写明做错的原因大致可分为以下几类:1、找不到解题着手点。2、概念不清、似懂非懂。3、方法的选择有问题。4、知识点之间的迁移和综合有问题。5、情景设计看不懂。6、不熟练,时间不够。7、粗心,或算错。以上方法经过一个阶段自查,建立一份个人补差档案。通过边查边改,重复犯的错误一定会越来越少。同时,随着自我认识的不断完善,也有利于考试时增强自信心,消除紧张情绪。

四、做好每一章知识的系统总结
1、做好每一天的复习。上完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等,尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、做好单元复习。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
五、适量训练是学好数学的保证
学好数学要做大量的题,但反过来做了大量的题,数学不一定好,“不要以做题多少论英雄”,因此要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。1、要有针对性地做题,典型的题目,应该规范地完成,同时还应了解自己,有选择地做一些课外的题;2、要循序渐进,由易到难,要对做过了典型题目有一定的体会和变通。 3、是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。4、尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。5、独立思考是数学的灵魂,遇到不懂或困难的问题时,要坚持独立思考,不轻易问人,不要一遇到不会的东西就马上去问别人,自己不动脑子,专门依赖别人,而是要自己先认真地思考一下,依靠自己的努力克服其中的某些困难,经过很大的努力仍不能解决的问题,再虚心请教别人,请教时,不要把问题问得太透。学会提出问题,提出问题往往比解决问题更难,而且也更重要。
六、养成良好的解题习惯
如仔细阅读题目,看清数字,规范解题格式,部分同学(尤其是脑子比较好的同学)自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。
七、分析试卷:将存在问题分类
  每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类,可如下分类:
  第一类问题———遗憾之错。就是分明会做,反而做错了的题;比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如角的单位混用等。出现这类问题是考试后最后悔的事情。
消除遗憾要消除遗憾必须弄清遗憾的原因,然后找出解决问题的办法,如“审题之错”,是否出在急于求成?可采取“一慢一快”战术,即审题要慢、答题要快。“计算错误”,是否由于草稿纸用得太乱等。建议将草稿纸对折分块,每一块上演算一道题,有序排列便于回头查找。 “抄写之错”,可以用检查程序予以解决。“表达之错”,注意表达的规范性,平时作业就严格按照规范书写表达,学习高考评分标准写出必要的步骤,并严格按着题目要求规范回答问题。
  第二类问题———似非之错。记忆的不准确,理解的不够透彻,应用得不够自如;回答不严密、不完整;第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。弄懂似非“似是而非”是自己记忆不牢、理解不深、思路不清、运用不活的内容。这表明你的数学基础不牢固,一定要突出重点,夯实基础。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法;当然数学的学习要有一定题量的积累,才能达到举一反三、运用自如的水平。
  第三类问题———无为之错。由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。力争有为在高三复习的第一轮中,不要做太难的题和综合性很强的题目,因为综合题大多是由几道基础题组成的,只有夯实了基础,做熟了基础题目,掌握了基本思想和方法,综合题才能迎刃而解。在高三复习时间较紧的情况下,第一阶段要有所为,有所不为,但平时考试和老师留的经过筛选的题目要会做,要做好。
八、做好每一阶段的复习
进入高三后基本上就开始复习了,要服从老师的计划和安排,扎扎实实完成每一阶段的任务,不能急于求成.一般分为四个阶段.
1.第一阶段是系统复习.时间大约7个月.重点是全面复习,侧重基础,即按章节进行,以数学的基础知识、基本技能和基本方法为核心,系统而全面地弄清每一个知识点,熟练掌握通性、通法,并注重知识体系的形成.
2.第二阶段是重点复习.时间大约为一个月.重点是以提高知识与能力的综合性、应用性和创新性.这是几年以来考题的改革方向.经过第一阶段的复习,同学们对基础知识的掌握已经达到了一定的程度,接下来老师就要给同学们组织一些专题了.包括:
知识内在联系型专题,如:函数、方程、不等式专题;函数与数列专题等.
思想方法类专题,如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想;转化与化归的思想方法等.
应用问题专题.进一步加强各种类型应题的练习,提高阅读理解、建立数学模型的能力.
3.第三阶段是综合练习.时间大约半月.重点是提高应试水平.通过综合试卷的反复练习,应在答题策略、时间分配,尤其是读题时的一次性感觉、一次性切入、一次性成功上加强训练.
4.第四阶段是保温和自由复习阶段.保持良好精神状态和平静的心理,坚信自己的实力,满怀信心迎接高考.
总之,同学们要坚定信心,脚踏实地按照老师的要求并结合自己情况认真去做,采用科学的学习方法,持之一恒,一定能在最后的高考中取得优异的成绩.

高考数学复习方法相关知识

为大家整理的高三数学一轮复习规划文章,供大家学习参考!在一轮复习中,数学科目当年的《考试说明》和《教学大纲》是非常重要的。这些材料你可以通过网络或者通过老师来获取。找到之后要好好研究,不能大致浏览,要了解每一部分要求学习到怎样的程度。虽然这些工作老师也会进行,但是由于你比较了解自己的优势和不足,所以研究起来更加有针对性。对于这两部分材料的研究,最终目的是时即使丢开课本,头脑中也能有考试所要求的数学
为大家整理的高三数学复习计划思路文章,供大家学习参考! 一、第一轮复习  第一轮复习以知识点和基础题贯穿整个复习过程,其主要任务是在老师的指导下,让学生对基础知识,基本技能进行梳理,使学生建立一个系统、完整化的知识体系;在老师的组织下通过对基础题的系统训练和规范训练,使学生准确理解每一个概念,能从不同角度把握所学的每个知识点可能考查到的题型,熟练掌握各种典型问题的通性、通法。  第一轮复习一定要做
为大家整理的高三数学立体几何知识点复习文章,供大家学习参考!学好立几并不难,空间想象是关键。点线面体是一家,共筑立几百花园。点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。已知面与面平行,线面
为大家整理的高三数学复习攻略:概率与统计文章,供大家学习参考!概率与统计(文)命题趋势预测:高考对概率与统计内容的考查,往往 以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向。概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,高考概率统计应用题多数省份出现在解答题前三题的位置,可见概率统计在高考中属于中档题。在今年的高考中,可能涉及等可能事件,互斥事件,对立事件
为大家整理的高三数学复习资料:不等式选讲文章,供大家学习参考! 考纲要求  1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式  (1)|a+b|≤|a|+|b|;  (2)|a-b|≤|a-c||+|c-b|  (3)会利用绝对值的几何意义求解以下类型的不等式:  |ax+b|≤c,|ax+b|≥c;|x-c|+|x-b|≤a  2.了解柯西不等式的不同形式,理解他们的几何
为大家整理的高三数学复习资料:不等式的应用文章,供大家学习参考! 考纲要求  1.会用基本不等式解决简单的(小)值问题.  2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.  考纲研读  近几年的高考试题增强了对密切联系生产和生活实际的应用性问题的考查力度.主要有两种方式:  (1)线性规划问题:求给定可行域的面积;求给定可行域的解;求目标函数中参数的范围.  (2)基本不等式的

Copyright @2020 - 2020 All Rights Reserved

回到顶部