您现在的位置:学习街 > 中考备考 > 知识点 > 数学知识点 > 正文
数学知识点 语文知识点 英语知识点 物理知识点 化学知识点 政治知识点 历史知识点 地理知识点

九年级下册数学知识点浙教版2016

时间:2020-09-25 07:48:35

26.1 二次函数及其图像
二次函数(quadratic function)是指未知数的次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:
一般式
y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;
顶点式
y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)

求根公式
二次函数表达式的右边通常为二次三项式。
求根公式
x是自变量,y是x的二次函数
x1,x2=[-b±(√(b^2-4ac))]/2a
(即一元二次方程求根公式)(如右图)
求根的方法还有因式分解法和配方法
在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。

不同的二次函数图像
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有 1本身图像,旁边注明函数。
2画出对称轴,并注明X=什么
3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质
轴对称
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
顶点
2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2;)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2;-4ac=0时,P在x轴上。

为大家整理的初三年级数学直线形知识点总结归纳的文章,供大家学习参考!

一、 直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从"图形"、"表示法"、"界限"、"端点个数"、"基本性质"等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用"线段的基本性质"论证"三角形两边之和大于第三边")

4.两点间的距离(三个距离:点-点;点-线;线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明"直角三角形中斜边大于直角边")

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成

13.公理、定理

14.逆命题

二、 三角形

分类:⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

3.三角形的主要线段

讨论:①定义②××线的交点-三角形的×心③性质

① 高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法-反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、 四边形

分类表:

1.一般性质(角)

⑴内角和:360°

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形→平行四边形→矩形→正方形

┗→菱形--↑

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质);⑵中心对称(定义及性质)

4.有关定理:①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:①常连结四边形的对角线;②梯形中常"平移一腰"、"平移对角线"、"作高"、"连结顶点和对腰中点并延长与底边相交"转化为三角形。

6.作图:任意等分线段。

四、 应用举例(略)

为大家整理的2014九年级数学二次根式知识点的文章,供大家学习参考!

知识点一: 二次根式的概念

形如√a(a≥0)的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a≥0是√a为二次根式的前提条件,如√5,√(x2+1),

√(x-1) (x≥1)等是二次根式,而√(-2),√(-x2-7)等都不是二次根式。

知识点二:取值范围

1. 二次根式有意义的条件:由二次根式的意义可知,当a≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。

知识点三:二次根式√a(a≥0)的非负性

√a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即

√a≥0(a≥0)。

注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。

知识点四:二次根式(√a) 的性质

(√a)2=a(a≥0)

文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式(√a)2=a(a≥0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a≥0,则

a=(√a)2,如:2=(√2)2,1/2=(√1/2)2.

知识点五:二次根式的性质

√a2=|a|

文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

注:

1、化简√a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即√a2=|a|=a (a≥0);若a是负数,则等于a的相反数-a,即√a2=|a|=-a (a﹤0);

2、√a2中的a的取值范围可以是任意实数,即不论a取何值,√a2一定有意义;

3、化简√a2时,先将它化成|a|,再根据绝对值的意义来进行化简。

知识点六:(√a)2与√a2的异同点

1、不同点:(√a)2与√a2表示的意义是不同的,(√a)2表示一个非负数a的算术平方根的平方,而√a2表示一个实数a的平方的算术平方根;在(√a)2中,而√a2中a可以是正实数,0,负实数。但(√a)2与√a2都是非负数,即(√a)2≥0,√a2≥0。因而它的运算的结果是有差别的,(√a)2=a(a≥0) ,而√a2=|a|。

2、相同点:当被开方数都是非负数,即a≥0时,

(√a)2=√a2;a﹤0时,(√a)2无意义,而√a2=|a|=-a.

数学知识点相关知识

1.物体的表面或封闭图形的大小,就是他们的面积。  2.比较两个图形面积的大小,要用统一的面积单位来测量。  3.常用的面积单位有平方厘米(cm2),平方分米(dm2)、平方米(m2)。  4.边长1厘米的正方形面积是1平方厘米。  5.边长1分米的正方形面积是1平方分米。  6.边长1米的正方形面积是1平方米。  7.边长100米的正方形面积是1公顷(10000平方米)。  8.边长1千米(10
第二十七章相似  一、图形的相似  1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。  2.判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。 3.相似比:相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形全等。  二、相似三角形  1.性质:平行于三角形一边的直线和其他两
28.1锐角三角函数1.Rt△ABC中∠A的对边(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA= 斜边∠A的邻边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA= 斜边∠A的对边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA= ∠A的邻边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota= ∠A的对边28.2解直角三角形解直角三角形 一、锐角三角函数 (一)、锐
26.1 二次函数及其图像  二次函数(quadratic function)是指未知数的次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。  一般的,自变量x和因变量y之间存在如下关系:  一般式  y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;  顶点式  y=
5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)抛物线与x轴交点个数6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。Δ= b^2-4ac=0时,抛物线与x轴有1个交点。_______Δ= b^2-4ac0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b&sup2;/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|

Copyright @2020 - 2020 All Rights Reserved

回到顶部