您现在的位置:学习街 > 中考备考 > 知识点 > 数学知识点 > 正文
数学知识点 语文知识点 英语知识点 物理知识点 化学知识点 政治知识点 历史知识点 地理知识点

2017初三下册数学知识点苏科版

时间:2020-09-25 04:52:28

轴对称

  1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  顶点

  2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2;)/4a )

  当-b/2a=0时,P在y轴上;当Δ= b^2;-4ac=0时,P在x轴上。

  开口

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  决定对称轴位置的因素

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号

  当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号

  可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右。

  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

  决定抛物线与y轴交点的因素

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  抛物线与x轴交点个数

  6.抛物线与x轴交点个数

  Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

  _______

  Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

  当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在

  {x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

  特殊值的形式

  7.特殊值的形式

  ①当x=1时 y=a+b+c

  ②当x=-1时 y=a-b+c

  ③当x=2时 y=4a+2b+c

  ④当x=-2时 y=4a-2b+c

  二次函数的性质

  8.定义域:R

  值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

  正无穷);②[t,正无穷)

  奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。

  周期性:无

  解析式:

  ①y=ax^2+bx+c[一般式]

  ⑴a≠0

  ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

  ⑶极值点:(-b/2a,(4ac-b^2)/4a);

  ⑷Δ=b^2-4ac,

  Δ>0,图象与x轴交于两点:

  ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

  Δ=0,图象与x轴交于一点:

  (-b/2a,0);

  Δ<0,图象与x轴无交点;

  ②y=a(x-h)^2+k[顶点式]

  此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

  ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

  对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X

  的增大而减小

  此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连

  用)。

  交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。

  26.2 用函数观点看一元二次方程

  1. 如果抛物线 与x轴有公共点,公共点的横坐标是 ,那么当 时,函数的值是0,因此 就是方程的一个根。

  2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

  26.3 实际问题与二次函数

  在日常生活、生产和科研中,求使材料最省、时间最少、效率等问题,有些可归结为求二次函数的值或最小值。

为大家整理的人教版九年级数学实数知识点讲解的文章,供大家学习参考!

第一章 实数

★重点★ 实数的有关概念及性质,实数的运算

☆内容提要☆

一、 重要概念

1.数的分类及概念

数系表:

说明:“分类”的原则:1)相称(不重、不漏)

2)有标准

2.非负数:正实数与零的统称。(表为:x≥0)

常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法

②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,1/a<1;D.积为1。

4.相反数: ①定义及表示法

②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算

1. 运算法则(加、减、乘、除、乘方、开方)

2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]

分配律)

3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”

到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。

三、 应用举例(略)

附:典型例题

1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

=b-a.

2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

数学知识点相关知识

1.物体的表面或封闭图形的大小,就是他们的面积。  2.比较两个图形面积的大小,要用统一的面积单位来测量。  3.常用的面积单位有平方厘米(cm2),平方分米(dm2)、平方米(m2)。  4.边长1厘米的正方形面积是1平方厘米。  5.边长1分米的正方形面积是1平方分米。  6.边长1米的正方形面积是1平方米。  7.边长100米的正方形面积是1公顷(10000平方米)。  8.边长1千米(10
第二十七章相似  一、图形的相似  1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。  2.判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。 3.相似比:相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形全等。  二、相似三角形  1.性质:平行于三角形一边的直线和其他两
28.1锐角三角函数1.Rt△ABC中∠A的对边(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA= 斜边∠A的邻边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA= 斜边∠A的对边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA= ∠A的邻边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota= ∠A的对边28.2解直角三角形解直角三角形 一、锐角三角函数 (一)、锐
26.1 二次函数及其图像  二次函数(quadratic function)是指未知数的次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。  一般的,自变量x和因变量y之间存在如下关系:  一般式  y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;  顶点式  y=
5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)抛物线与x轴交点个数6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。Δ= b^2-4ac=0时,抛物线与x轴有1个交点。_______Δ= b^2-4ac0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b&sup2;/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|

Copyright @2020 - 2020 All Rights Reserved

回到顶部